

Assessment

Assessed with a 1 hour 15 minute, 60 mark paper where all questions are answered.

Useful Data

Gravitational constant, G	$6.67 \text{ x } 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$
Avogadro constant, N _A	6.02 x 10 ²³ mol ⁻¹
Molar gas constant, R	8.31 J mol ⁻¹ K ⁻¹
Boltzmann constant, k	1.38 x 10 ⁻²³ J K ⁻¹

Module 1: Newton's laws and momentum

You should be able to	Unaware of this section	l am aware of this, but need to do more work	l understand this area well
4.1.1 Newton's la	aws of motion		
state and use each of Newton's three laws of Motion.			
define linear momentum as the product of mass and			
velocity and appreciate the vector nature of momentum.			
define <i>net force on a body</i> as equal to rate of change			
of its momentum.			
select and apply the equation:			
$F = \Delta p / \Delta t$			
to solve problems.			
explain that $F = ma$ is a special case of Newton's			
second law when mass <i>m</i> remains constant.			
define impulse of a force.			
recall that the area under a force against time graph is			
equal to impulse.			
recall and use the equation impulse = change in			
momentum.			
4.1.2 Collisions			
state the principle of conservation of momentum.			
apply the principle of conservation of momentum to			
solve problems when bodies interact in one dimension.			
define a <i>perfectly elastic collision</i> and an <i>inelastic</i>			
collision.			
explain that whilst the momentum of a system			
is always conserved in the interaction between bodies,			
some change in kinetic energy usually occurs.			

PHYSICS DEPARTMENT

Module 2: Circular motion and oscillations

You should be able to	Unaware of this section	l am aware of this, but need to do more work	l understand this area well
4.2.1 Circula	r motion		
define the <i>radian</i> .			
convert angles from degrees into radians and vice			
versa.			
explain that a force perpendicular to the velocity of an			
object will make the object describe a circular path.			
explain what is meant by centripetal acceleration and			
centripetal force.			
select and apply the equations for speed:			
$v = 2\pi r / T$			
and centripetal acceleration			
$a = v^2 / r$			
select and apply the equation for centripetal force:			
$F = ma = mv^2 / r$			
4.2.2 Gravitat	ional fields		
describe how a mass creates a gravitational field in the			
space around it.			
define gravitational field strength as force per unit			
mass.			
use gravitational field lines to represent a gravitational field.			
state Newton's law of gravitation.			
select and use the equation:			
$F = -GMm/r^2$			
for the force between two point or spherical objects.			
select and apply the equation:			
$q = -GM/r^2$			
for the gravitational field strength of a point mass			
select and use the equation:			
$g = -GM/r^2$			
to determine the mass of the Earth or another similar			
object.			
explain that close to the Earth's surface the			
gravitational field strength is uniform and approximately			
equal to the acceleration of free fall.			
analyse circular orbits in an inverse square law field by			
relating the gravitational force to the centripetal			
acceleration it causes.			

PHYSICS DEPARTMENT

define and use the <i>period</i> of an object describing a circle.		
derive the equation:		
$T^2 = (4\pi^2/GM)r^3$		
from first principles.		
select and apply the equation:		
$T^2 = (4\pi^2/GM)r^3$		
for planets and satellites (natural and artificial).		
select and apply Kepler's third law $T^2 \alpha r^3$ to solve		
problems.		
define <i>geostationary orbit</i> of a satellite and state the		
uses of such satellites.		
4.2.3 Simple harm	onic oscillations	
describe simple examples of free oscillations.		
define and use the terms displacement, amplitude		
neriod, frequency, angular frequency and phase		
difference.		
select and use the equation:		
period = 1/frequency		
define <i>simple harmonic motion</i> .		
select and apply the equation $a = -(2\pi f)^2 x$ as the		
defining equation of simple harmonic motion.		
select and use $x = A \cos(2\pi ft)$ or $x = A \sin(2\pi ft)$ as		
solutions to the equation $a = -(2\pi f)^2 x$		
select and apply the equation v max = (2 π f)A for the		
maximum speed of a simple harmonic oscillator.		
explain that the period of an object with simple		
harmonic motion is independent of its amplitude.		
describe, with graphical illustrations, the changes in		
displacement, velocity and acceleration during simple		
harmonic motion.		
describe and explain the interchange between kinetic		
and potential energy during simple harmonic motion.		
describe the effects of damping on an oscillatory		
system.		
describe practical examples of forced oscillations and		
resonance.		
describe graphically how the amplitude of a forced		
oscillation changes with frequency near to the natural		
frequency of the system		
describe examples where resonance is useful and		
other examples where resonance should be avoided		

Module 3: Thermal physics

You should be able to	Unaware of this section	l am aware of this, but need to do more work	l understand this area well
4.3.1 Solid, Liq	uid and Gas		
describe solids, liquids and gases in terms of the			
spacing, ordering and motion of atoms or molecules.			
describe a simple kinetic model for solids, liquids and			
gases.			
describe an experiment that demonstrates Brownian			
motion and discuss the evidence for the movement of			
molecules provided by such an experiment.			
define the term <i>pressure</i> and use the kinetic model to			
explain the pressure exerted by gases.			
define internal energy as the sum of the random			
distribution of kinetic and potential energies associated			
with the molecules of a system.			
explain that the rise in temperature of a body leads to			
an increase in its internal energy.			
explain that a change of state for a substance leads to			
changes in its internal energy but not its temperature.			
describe using a simple kinetic model for matter the			
terms melting, boiling and evaporation.			
4.3.2 Temp	erature		
explain that thermal energy is transferred from a			
region of higher temperature to a region of lower			
temperature.			
explain that regions of equal temperature are in			
thermal equilibrium.			
describe how there is an absolute scale of temperature			
that does not depend on the property of any particular			
substance (i.e. the thermodynamic scale and the concept			
of absolute zero).			
convert temperatures measured in kelvin to degrees			
Celsius (or vice versa):			
T (K)= θ (°C) + 273.15			
state that absolute zero is the temperature at which a			
substance has minimum internal energy.			
4.3.3 Thermal properties of materials			
define and apply the concept of specific heat capacity.			
select and apply the equation $E = mc\Delta\theta$			
describe an electrical experiment to determine the			
specific heat capacity of a solid or a liquid.			
describe what is meant by the terms latent heat of			
tusion and latent heat of vaporisation.			
4.3.4 Ideal Gases			
state Boyle's law.			
select and apply pV/T = constant			

Beechen Cliff

PHYSICS DEPARTMENT

state the basic assumptions of the kinetic theory of	
gases.	
state that one mole of any substance contains	
6.02x10 ²³ particles and that 6.02x10 ²³ mol ⁻¹ is the	
Avogadro constant N _A	
select and solve problems using the ideal gas equation	
expressed as	
pV = NkT and $pV = nRT$,	
where <i>N</i> is the number of atoms and <i>n</i> is the number of	
moles.	
explain that the mean translational kinetic energy of an	
atom of an ideal gas is directly proportional to the	
temperature of the gas in Kelvin.	
select and apply the equation $E = 3kT/2$ for the mean	
translational kinetic energy of atoms.	

