61503

Practical Skills in Physics 1

Evaluative Task Preparation

Objectives

- Evaluate the results and their impact on the experimental methodology.
- Assess the reliability and accuracy of the experiment by calculating percentage differences and uncertainties.
- Evaluate the methodology with a view to improving experimental precision and accuracy.
- Identify weaknesses in the experimental methodology and measurements.
- Suggest improvements to the experimental procedures and measurements.

Overview

	Qual	Quant	Eval
Task 1	$/ 10$	$/ 20$	$/ 10$
Task 2	$/ 10$	$/ 20$	$/ 10$
Task 3	$/ 10$	$/ 20$	$/ 10$

- The highest mark from each task counts towards your total mark /40
- There will be the opportunity to complete one task in class time with resits carried out for students who feel they could improve their mark.

Evaluative Format

- Task carried out under exam conditions by students working individually
- Evaluate results and the methodology of a previous task
- Teacher marks the work which is then moderated with other teachers
- A sample of work sent to OCR when they request it

What you could be asked

- How do you calculate percentage uncertainty and percentage difference?
- How can you tell if results were reliable?
- How can you tell if results are accurate?
- What kind of limitations can you identify in your method?
- How could these be improved?
- How did they affect the value you calculated?

Percentage Uncertainty

How to calculate percentage uncertainty

PU for a single reading = smallest interval of measuring device $\times 100$ measured value

PU for a repeated reading $=\underline{\text { half the range }} \times 100$
mean value

Percentage Uncertainty

How to calculate percentage uncertainty in a gradient

PU $=$ gradient of best fit line - gradient of worst fit line $\times 100$ gradient of best fit line

How to calculate percentage uncertainty in a y-intercept

PU $=$ intercept of best fit line - intercept of worst fit line $\times 100$ intercept of best fit line

Final Uncertainty

Final uncertainty (FU) is equal to the sum of the percentage uncertainties (PU) in all the quantities that are involved in the equation.

- $y=a b$
- $y=a / b$
- $y=a^{2}$
- $y=b^{3}$
$F U=P U_{a}+P U_{b}$
$F U=P U_{a}+P U_{b}$
$F U=P U_{a}+P U_{a}$
$F U=P U_{b}+P U_{b}+P U_{b}$

Percentage Difference

Percentage difference (PD) is the difference between the experimental value obtained and the true value.

$$
P D=\frac{\text { true value }- \text { experimental value }}{\text { true value }} \times 100
$$

e.g. You conduct an experiment to determine the speed of light and calculate it to be $2.75 \times 10^{9} \mathrm{~ms}^{-1}$

$$
\mathrm{PD}=\frac{3.00 \times 10^{9}-2.75 \times 10^{9}}{3.00 \times 10^{9}} \times 100=8.33 \%
$$

Your experimental value has a difference of 8.33% to the accepted value.

Reading

- OCR Practical Skills Handbook

Just read Chapter 10

