

Assessment

Assessed with a 1 hour 45 minute, 100 mark paper where all questions are answered.

Useful Data

Speed of light in a vacuum, c	3.00 x 10 ⁸ m s ⁻¹
Elementary charge <i>, e</i>	1.60 x 10 ⁻¹⁹ C
Planck constant, h	6.63 x 10 ⁻³⁴ J s

Module 1: Electric current

You should be able to	Unaware of this section	I am aware of this, but need to do more work	l understand this area well
2.1.1 Charge a	nd current		
explain that electric current is a net flow of charged particles			
explain that electric current in a metal is due to the			
movement of electrons, whereas in an electrolyte the current			
is due to the movement of ions.			
explain what is meant by conventional current and electron			
flow.			
select and use the equation $\Delta Q = I\Delta t$			
define the <i>coulomb</i> .			
describe how an ammeter may be used to measure the			
current in a circuit.			
recall and use the elementary charge			
$e = 1.6 \times 10^{-19} C$			
describe Kirchhoff's first law and appreciate that this is a			
consequence of conservation of charge.			
state what is meant by the term <i>mean drift velocity</i> of charge			
carriers.			
select and use the equation I = Anev			
describe the difference between conductors,			
semiconductors and insulators in terms of the number density			
n.			

Module 2: Resistance

You should be able to	Unaware of this section	I am aware of this, but need to do more work	l understand this area well
2.2.1 Circuit	symbols		
recall and use appropriate circuit symbols as set out in SI Units, Signs, Symbols and Abbreviations (ASE, 1981) and Signs, Symbols and Systematics (ASE, 1995)			
interpret and draw circuit diagrams using these symbols.			
2.2.2 E.m.f.	and p.d.		
define <i>potential difference</i> (p.d.).			
select and use the equation W = VQ			
define the <i>volt</i> .			
describe how a voltmeter may be used to determine the p.d. across a component			
define <i>electromotive force</i> (e.m.f.) of a source such as a cell			
or a power supply.			
describe the difference between e.m.f. and p.d. in terms of			
energy transfer.			
2.2.3 Resi	istance	1	1
define resistance.			
select and use the equation for resistance V = I R			
define the <i>ohm</i> .			
state and use Ohm's law.			
describe the I–V characteristics of a resistor at constant			
temperature, filament lamp and light-emitting diode (LED).			
describe an experiment to obtain the <i>I–V</i> characteristics of a resistor at constant temperature, filament lamp and light-emitting diode (LED).			
describe the uses and benefits of using light-emitting diodes (LEDs).			
	istivity		
define <i>resistivity</i> of a material.			
select and use the equation: $\rho = RA/L$			
describe how the resistivities of metals and semiconductors are affected by temperature.			
describe how the resistance of a pure metal wire and of a			
negative temperature coefficient (NTC) thermistor is affected			
by temperature.			
2.2.5 Pc	ower		
describe power as the rate of energy transfer.			
select and use power equations:			
$P = VI = I^2 R = V^2 / R$			
explain how a fuse works as a safety device.			
determine the correct fuse for an electrical device.			
select and use the equation: $W = IVt$			
define the kilowatt-hour (kW h) as a unit of energy.			
calculate energy in kW h and the cost of this energy when			
solving problems.			

PHYSICS DEPARTMENT

Module 3: DC Circuits

You should be able to	Unaware of this section	I am aware of this, but need to do more work	l understand this area well
2.3.1 Series and p	arallel circuits		
state Kirchhoff's second law and appreciate that this is a			
consequence of conservation of energy.			
apply Kirchhoff's first and second laws to circuits.			
select and use the equation for the total resistance of two or more resistors in series.			
select and use the equation for the total resistance of two or more resistors in parallel.			
solve circuit problems involving series and parallel circuits with one or more sources of e.m.f.			
explain that all sources of e.m.f. have an internal resistance.			
explain the meaning of the term <i>terminal p.d.</i>			
select and use the equations:			
e.m.f. = / (<i>R</i> + <i>r</i>)			
e.m.f. = <i>V</i> + <i>Ir</i>			
2.3.2 Practica	al circuits		
draw a simple potential divider circuit.			
explain how a potential divider circuit can be used to			
produce a variable p.d.			
select and use the potential divider equation:			
$V_{out} = \underline{R_2} x V_{in}$			
$R_1 + R_2$			
describe how the resistance of a light dependent resistor			
(LDR) depends on the intensity of light.			
describe and explain the use of thermistors and light-			
dependent resistors in potential divider circuits.			
describe the advantages of using dataloggers to monitor			
physical changes.			

Module 4: Waves

You should be able to	Unaware of this section	I am aware of this, but need to do more work	l understand this area well
2.4.1 Wave	motion	•	
describe and distinguish between progressive longitudinal			
and transverse waves.			
define and use the terms displacement, amplitude,			
wavelength, period, phase difference, frequency and speed of a			
wave.			
derive from the definitions of speed, frequency and			
wavelength, the wave equation:			
$v = f\lambda$			
select and use the wave equation.			
explain what is meant by reflection, refraction and			
diffraction of waves such as sound and light.			
2.4.2 Electroma	gnetic waves	T	
state typical values for the wavelengths of the different			
regions of the electromagnetic spectrum from radio waves to			
X-rays.			
state that all electromagnetic waves travel at the same			
speed in a vacuum.			
describe differences and similarities between different			
regions of the electromagnetic spectrum.			
describe some of the practical uses of electromagnetic			
waves.			
describe the characteristics and dangers of UV-A, UV-B and			
UV-C radiations and explain the role of sunscreen.			
explain what is meant by plane polarised waves and			
understand the polarisation of electromagnetic waves.			
explain that polarisation is a phenomenon associated with transverse waves only.			
state that light is partially polarised on reflection.			
recall and apply Malus's law for transmitted intensity of light			
from a polarising filter.			
2.4.3 Inter	ference		
state and use the principle of superposition of waves.			
apply graphical methods to illustrate the principle of			
superposition.			
explain the terms <i>interference</i> , <i>coherence</i> , <i>path difference</i>			
and phase difference.			
state what is meant by constructive interference and			
destructive interference.			
describe experiments that demonstrate two source			
interference using sound, light and microwaves.			
describe constructive interference and destructive			
interference in terms of path difference and phase difference.			
use the relationships:			
intensity = power/cross-sectional area			
intensity α amplitude ²			
describe the Young double-slit experiment and explain how			
it is a classical confirmation of the wave-nature of light.			

PHYSICS DEPARTMENT

You should be able to	Unaware of this section	I am aware of this, but need to do more work	l understand this area well
select and use the equation:			
$\lambda = ax/D$			
for electromagnetic waves.			
describe an experiment to determine the wavelength of			
monochromatic light using a laser and a double slit.			
describe the use of a diffraction grating to determine the			
wavelength of light (the structure and use of a spectrometer			
are not required).			
select and use the equation:			
$d\sin\theta = n\lambda$			
explain the advantages of using multiple slits in an			
experiment to find the wavelength of light.			
2.4.4 Station	ary waves	·	
explain the formation of stationary (standing) waves using			
graphical methods.			
describe the similarities and differences between progressive			
and stationary waves.			
define the terms <i>nodes</i> and <i>antinodes</i> .			
describe experiments to demonstrate stationary waves using			
microwaves, stretched strings and air columns.			
determine the standing wave patterns for stretched string			
and air columns in closed and open pipes.			
use the equation:			
separation between adjacent nodes (or antinodes) = $\lambda/2$			
define and use the terms fundamental mode of vibration and			
harmonics.			
determine the speed of sound in air from measurements on			
stationary waves in a pipe closed at one end.			

Module 5: Quantum Physics

You should be able to	Unaware of this section	l am aware of this, but need to do more work	l understand this area well
2.5.1 Energy o	of a photon		
describe the particulate nature (photon model) of electromagnetic radiation.			
state that a photon is a quantum of energy of electromagnetic radiation.			
select and use the equations for the energy of a photon: $E = hf$ and $E = hc / \lambda$			
define and use the electronvolt (eV) as a unit of energy.			
use the transfer equation $eV = \frac{1}{2} mv^2$ for electrons and other			
charged particles.			
describe an experiment using LEDs to estimate the Planck constant <i>h</i> using the equation eV = hc $/\lambda$			
2.5.2 The photo	electric effect		1
describe and explain the phenomenon of the photoelectric effect.			
explain that the photoelectric effect provides evidence for a			
particulate nature of electromagnetic radiation while			
phenomena such as interference and diffraction provide			
evidence for a wave nature.			
define and use the terms work function and threshold			
frequency.			
state that energy is conserved when a photon interacts with an electron.			
select, explain and use Einstein's photoelectric equation: $hf = \Phi + KE_{max}$			
explain why the maximum kinetic energy of the electrons is			
independent of intensity and why the photoelectric current in			
a photocell circuit is proportional to intensity of the incident			
radiation.			
2.5.3 Wave-pa	rticle duality	1	
explain electron diffraction as evidence for the wave nature			
of particles like electrons.			
explain that electrons travelling through polycrystalline			
graphite will be diffracted by the atoms and the spacing between the atoms.			
select and apply the de Broglie equation $\lambda = h / mv$			
explain that the diffraction of electrons by matter can be			
used to determine the arrangement of atoms and the size of			
nuclei.			
2.5.4 Energy lev	els in atoms	1	1
explain how spectral lines are evidence for the existence of			
discrete energy levels in isolated atoms, ie in a gas discharge			
lamp			
describe the origin of emission and absorption line spectra.			
use the relationships:			
$hf = E_1 - E_2$			
and			
$hc/\lambda = E_1 - E_2$			

PHYSICS DEPARTMENT

Beechen Cliff