A Level Physics - G481

Assessment

Assessed with a 1 hour, 60 mark written paper where all questions are answered.

Useful Data

$$
\text { Acceleration of free fall, } g \quad 9.81 \mathrm{~ms}^{-2}
$$

Module 1: Motion

You should be able to...	Unaware of this section	I am aware of this, but need to do more work	I understand this area well

1.1.1 Physical quantities and units

..explain that some physical quantities consist of a numerical magnitude and a unit.		
.. use correctly the named units listed in this specification as appropriate.		
... use correctly the following prefixes and their symbols to		
indicate decimal sub-multiples or multiples of units: pico (p),		
nano (n), micro (μ), milli (m), centi (c), kilo (k), mega (M), giga		
(G), tera (T).		
...make suitable estimates of physical quantities included		
within this specification.		

1.1.2 Scalars and vectors

...define scalar and vector quantities and give examples.			
...draw and use a vector triangle to determine the resultant of			
two coplanar vectors such as displacement, velocity and force.			
...calculate the resultant of two perpendicular vectors such as			
displacement, velocity and force.			
... resolve a vector such as displacement, velocity and force			
into two perpendicular components.			

1.1.3 Kinematics

You should be able to...	Unaware of this section	I am aware of this, but need to do more work	I understand this area well
...determine acceleration from the gradient of a velocity against time graph.			

1.1.4 Linear motion

...derive the equations of motion for constant acceleration in a straight line from a velocity against time graph.		
.. select and use the equations of motion for constant acceleration in a straight line: $v=u+a t$ $s=1 / 2(u+v) t$ $s=u t+1 / 2 t^{2}$		
$\qquad v^{2}=u^{2}+2 a s$		
..apply the equations for constant acceleration in a straight line, including the motion of bodies falling in the Earth's uniform gravitational field without air resistance.		
..explain how experiments carried out by Galileo overturned Aristotle's ideas of motion.		
...describe an experiment to determine the acceleration of free fall g using a falling body.		
..apply the equations of constant acceleration to describe and		
explain the motion of an object due to a uniform velocity in		
one direction and a constant acceleration in a perpendicular		
direction.		

Module 2: Forces in action

You should be able to...	Unaware of this section	I am aware of this, but need to do more work	I understand this area well

1.2.1 Force

...solve problems using the relationship:
net force = mass x acceleration $(F=m a)$ appreciating that
acceleration and the net force are always in the same direction
...define the newton.
...apply the equations for constant acceleration and $F=m a$ to
analyse the motion of objects.
..recall that according to the special theory of relativity, $F=m a$
cannot be used for a particle travelling at very high speeds
because its mass increases.

1.2.2 Non-linear motion

..explain that an object travelling in a fluid experiences a resistive or a frictional force known as drag.					
...state the factors that affect the magnitude of the drag force.					
...determine the acceleration of an object in the presence of					
drag					..state that the weight of an object is the gravitational force
:---					
acting on the object.		..select and use the relationship:			
:---	:---				
weight = mass \times acceleration of free fall ($W=m g$)					
..describe the motion of bodies falling in a uniform					
gravitational field with drag.					
...use and explain the term terminal velocity.					

1.2.3 Equilibrium

...draw and use a triangle of forces to represent the equilibrium of three forces acting at a point in an object.			
...state that the centre of gravity of an object is a point where the entire weight of an object appears to act.			
...describe a simple experiment to determine the centre of gravity of an object.			
...explain that a couple is a pair of forces that tends to produce rotation only.			
...define and apply the torque of a couple.			
...define and apply the moment of force.			
...explain that both the net force and net moment on an extended object in equilibrium is zero.			
...apply the principle of moments to solve problems, including the human forearm.			
...select and use the equation for density: $p=m v$			
...select and use the equation for pressure: $P=F / A$ where F is the force normal to the area A			

1.2.4 Car safety

...define thinking distance, braking distance and stopping distance.

You should be able to...	Unaware of this section	I am aware of this, but need to do more work	I understand this area well
...analyse and solve problems using the terms thinking distance, braking distance and stopping distance.			
...describe the factors that affect thinking distance and braking distance.			
..describe and explain how air bags, seat belts and crumple zones in cars reduce impact forces in accidents.			
..describe how air bags work, including the triggering mechanism.			
..describe how the trilateration technique is used in GPS (global positioning system) for cars.			

Module 3: Work and Energy

You should be able to...	Unaware of this section	I am aware of this, but need to do more work	I understand this area well

1.3.1 Work and conservation of energy

... define work done by a force.			
...define the joule.			
...calculate the work done by a force using:			
...state the principle of conservation of energy.			
convescribe examples of energy in different forms, its			
conservation to simple examples.			
...apply the idea that work done is equal to the transfer of			
energy to solve problems.			

1.3.2 Kinetic and potential energies
...select and apply the equation for kinetic energy:

$E_{k}=1 / 2 m v^{2}$			
...apply the definition of work done to derive the equation for the change in gravitational potential energy.			
...select and apply the equation for the change in gravitational potential energy near the Earth's surface: $\mathrm{E}_{\mathrm{p}}=\mathrm{mgh}$			
...analyse problems where there is an exchange between gravitational potential energy and kinetic energy.			
..apply the principle of conservation of energy to determine the speed of an object falling in the Earth's gravitational field.			

1.3.3 Power

...define power as the rate of work done.			
...define the watt.			
...calculate power when solving problems.			
...state that the efficiency of a device is always less than 100%			
because of heat losses.			
...select and apply the relationship for efficiency:			
\qquad efficiency $=\frac{\text { useful output energy } \times 100 \%}{\text { total input energy }}$			
...interpret and construct Sankey diagrams.			

1.3.4 Behaviour of springs and materials

...describe how deformation is caused by a force in one dimension and can be tensile or compressive.
...describe the behaviour of springs and wires in terms of force, extension, elastic limit, Hooke's law and the force constant (i.e. force per unit extension or compression).

You should be able to...	Unaware of this section	I am aware of this, but need to do more work	I understand this area well
...select and apply the equation: $F=k x$ where k is the force constant of the spring or the wire.			
...determine the area under a force against extension (or compression) graph to find the work done by the force.			
...select and use the equations for elastic potential energy $E=1 / 2 F x \text { and } E=1 / 2 k x^{2}$			
...define and use the terms stress, strain, Young's modulus and ultimate tensile strength (breaking stress).			
...describe an experiment to determine the Young modulus of a metal in the form of a wire.			
...define the terms elastic deformation and plastic deformation of a material.			
...describe the shapes of the stress against strain graphs for typical ductile, brittle and polymeric materials.			

