9 Marking scheme: Worksheet 2

1	a b	(The force <i>F</i> is given by $F = BIL \sin \theta$.) The force is a maximum when the angle θ between the wire and the magnetic field is 90°. The force is a minimum when the angle θ between the wire and the magnetic field is 0°. (The wire is parallel to the magnetic field.)	[1] [1]
2	a b c	$F = BIL \sin \theta$ $F = 0.050 \times 3.0 \times 0.04 \times \sin 90^{\circ}$ $F = 6.0 \times 10^{-3} \text{ N}$ $F = 0.050 \times 3.0 \times 0.04 \times \sin 30^{\circ}$ $F = 3.0 \times 10^{-3} \text{ N}$ $F = 0.050 \times 3.0 \times 0.04 \times \sin 65^{\circ}$ $F = 5.44 \times 10^{-3} \text{ N} \approx 5.4 \times 10^{-3} \text{ N}$	[1] [1] [1] [1] [1] [1]
3	a b	$F = BIL \sin \theta$ $B = \frac{F}{IL \sin \theta} = \frac{3.8 \times 10^{-3}}{1.2 \times 0.03 \times \sin 50^{\circ}}$ $B = 0.138 \text{ T} \approx 0.14 \text{ T}$ The direction is given by Fleming's left-hand rule. The wire experiences a force into the plane of the paper.	[1] [1] [1]
4	F = F = F =	= BQv = 0.18 × 1.6 × 10 ⁻¹⁹ × 4.0 × 10 ⁶ = 1.15 × 10 ⁻¹³ N ≈ 1.2 × 10 ⁻¹³ N	[1] [1] [1]
5	a b c	F = BQv $F = 0.004 \times 1.6 \times 10^{-19} \times 8.0 \times 10^{6}$ $F = 5.12 \times 10^{-15} \text{ N} \approx 5.1 \times 10^{-15} \text{ N}$ $a = \frac{F}{m} = \frac{5.12 \times 10^{-15}}{9.1 \times 10^{-31}}$ $a = 5.63 \times 10^{15} \text{ m s}^{-2} \approx 5.6 \times 10^{15} \text{ m s}^{-2}$ From circular motion, the centripetal acceleration <i>a</i> is given by: $a = \frac{v^{2}}{r}$ $v^{2} = (8.0 \times 10^{6})^{2}$	[1] [1] [1] [1]
		$r = \frac{v}{a} = \frac{(3.0 \times 10^{-7})}{5.63 \times 10^{15}}$	[1]
6	a _	$r = 1.14 \times 10$ m $\approx 1.1 \times 10$ m (1.1 cm) electron A force force region of uniform magnetic field (into plane of paper)	[1]

Both arrows at **A** and **B** are towards the centre of the circle.

[1]

[1]

[1]

- **b** The force on the electron is at 90° to the velocity. Hence the path described by the electron is a circle.
- **c** The magnetic force provides the centripetal force.

Therefore:
$$BQv = \frac{mv^2}{r}$$
 [1]

$$BQ = \frac{mv}{r} \text{ or } v = \frac{BQr}{m}$$
[1]

$$v = \frac{2.0 \times 10^{-3} \times 1.6 \times 10^{-19} \times 5.0 \times 10^{-2}}{9.1 \times 10^{-31}}$$
[1]

$$v = 1.76 \times 10^7 \text{ m s}^{-1} \approx 1.8 \times 10^7 \text{ m s}^{-1}$$
[1]

d
$$v = \frac{BQr}{m}$$
, so the speed v is directly proportional to the radius r. [1]

Radius is halved, so
$$v = \frac{1.76 \times 10^7}{2} = 8.8 \times 10^6 \text{ m s}^{-1}$$
 [1]

7 **a**
$$E_{\rm k} = 15 \times 10^3 \times 1.6 \times 10^{-19} = 2.4 \times 10^{-15} \,\text{J}$$
 (1 eV = $1.6 \times 10^{-19} \,\text{J}$) [1]
 $\frac{1}{2} mv^2 = 2.4 \times 10^{-15}$

$$2^{mV} = \sqrt{\frac{2 \times 2.4 \times 10^{-15}}{1.7 \times 10^{-27}}}$$
[1]

$$v = 1.68 \times 10^6 \text{ m s}^{-1} \approx 1.7 \times 10^6 \text{ m s}^{-1}$$
 [1]

$$\mathbf{b} \quad F = ma = \frac{mv^2}{r} \tag{1}$$

$$F = \frac{1.7 \times 10^{-27} \times (1.68 \times 10^6)^2}{0.05}$$
[1]

$$F = 9.60 \times 10^{-14} \text{ N} \approx 9.6 \times 10^{-14} \text{ N}$$
[1]

$$F = BO_V$$
[1]

c
$$F = BQv$$
 [1]
 $B = \frac{F}{F} = \frac{9.60 \times 10^{-14}}{10^{-14}}$ [1]

$$Qv = 1.6 \times 10^{-19} \times 1.68 \times 10^{6}$$

$$B \approx 0.36 \text{ T}$$
[1]

d Speed =
$$\frac{\text{distance}}{\text{time}}$$

time =
$$\frac{\text{circumference}}{\text{speed}} = \frac{2\pi \times 0.05}{1.68 \times 10^6}$$
 [1]

time =
$$1.87 \times 10^{-7}$$
 s $\approx 1.9 \times 10^{-7}$ s [1]

BQv

EQelectrical force on ion = magnetic force on ion EQ = BQvThe charge Q cancels. E = Bv

EQ

[1] [1]

[1]

[1]

The electric field strength is $E = \frac{V}{d}$. Therefore, the magnetic flux density is:

$$B = \frac{E}{v} = \frac{V/d}{v} = \frac{(5.0 \times 10^3)/0.024}{6.0 \times 10^6}$$
[1]

$$B = 3.47 \times 10^{-2} \,\mathrm{T} \approx 35 \,\mathrm{mT}$$
[1]

9 The centripetal force is provided by the magnetic force.

Therefore:
$$Bev = \frac{mv^2}{r}$$
 [1]

$$Be = \frac{mv}{r}$$
 or $v = \frac{Ber}{m}$ [1]

$$T = \frac{\text{circumference}}{\text{speed}} = \frac{2\pi r}{Ber/m}$$
[1]

The radius *r* of the orbit cancels. Hence: $T = \frac{2\pi m}{Be}$ The time *T* is independent of both the radius of the orbit *r* and the speed *v*. [1]

3