9 Marking scheme: Worksheet 1

1 A current-carrying conductor creates a magnetic field around itself.
2 The magnetic field around the current-carrying conductor 'interacts' with the external magnetic field - just like two interacting bar magnets.

3 The second finger points in the direction of conventional current.
4 a The conductor is pushed to the left.
b The conductor is pushed to the left.
c The conductor is pushed out of the plane of the paper.
$5 B=\frac{F}{I L}$
$[B]=\frac{\mathrm{N}}{\mathrm{Am}}=\mathrm{NA}^{-1} \mathrm{~m}^{-1}$
$6 F=B I L$
$F=0.12 \times 3.5 \times 0.01 \quad$ (length $=1.0 \mathrm{~cm}$)
$F=4.2 \times 10^{-3} \mathrm{~N}$
7 a $F=B I L$
$F=4.5 \times 10^{-3} \times 2.5 \times 0.07$
$F=7.88 \times 10^{-4} \approx 7.9 \times 10^{-4} \mathrm{~N}$
b The magnetic field is parallel to the current (or the wire).
c From Fleming's left-hand rule, $\mathbf{P Q}$ experiences a force out of the plane of the paper and $\mathbf{R S}$ a force into the plane of the paper.
Hence, the frame starts to rotate in a clockwise direction (when viewed from the end PS)
8 a $F=B I L \propto I \quad$ (force \propto current)
Hence, the force increases by a factor of 3.0 to a value of $1.41 \times 10^{-2} \mathrm{~N}$.
b $\quad F=B I L \propto B \quad$ (force \propto magnetic flux density)
Hence, the force is halved to a value of $2.35 \times 10^{-3} \mathrm{~N}$.
c $\quad F=B I L \propto L \quad$ (force \propto length of wire in the field)
Hence, the force is reduced to 40% of its initial value to $1.88 \times 10^{-3} \mathrm{~N}$.
9 a Left to right
b Force $=$ weight of paper tape

milli factor changing grams into kilograms
$F=5.89 \times 10^{-4} \mathrm{~N} \approx 5.9 \times 10^{-4} \mathrm{~N}$
c $\quad B=\frac{F}{I L}$
$B=\frac{5.89 \times 10^{-4}}{8.5 \times 0.052}$
$B=1.33 \times 10^{-3} \mathrm{~T} \approx 1.3 \mathrm{mT}$

10 It is the component of the magnetic flux at right angles to the current that provides the force on the conductor.
Component of B at right angles to current $=B_{\perp}$, where $B_{\perp}=B \sin \theta$.
The force F on conductor is given by $F=B_{\perp} I L$ Hence $F=(B \sin \theta) I L \quad$ or $\quad F=B I L \sin \theta$

11 Force experienced by $\mathbf{P Q}=$ force experienced by $\mathbf{R S}$ (but in opposite direction). [1]
No force experienced by $\mathbf{Q R}$ and $\mathbf{P S}$ (since current is parallel to the field).
torque $=$ one of the forces \times perpendicular distance between forces $=(B I L) x \quad[1]$
torque $=B I(L x), \quad L x=$ area of loop $=A \quad[1]$
torque $=B I A \propto A$
The torque is directly proportional to the area of the loop.

