9 Marking scheme: Worksheet 1

1	A current-carrying conductor creates a magnetic field around itself.	[1]
2	The magnetic field around the current-carrying conductor 'interacts' with the external magnetic field – just like two interacting bar magnets.	[1]
3	The second finger points in the direction of <u>conventional current</u> .	[1]
4	 a The conductor is pushed to the left. b The conductor is pushed to the left. c The conductor is pushed out of the plane of the paper. 	[1] [1] [1]
	$B = \frac{F}{IL}$	[1]
	$[B] = \frac{N}{A m} = N A^{-1} m^{-1}$	[1]
6	F = BIL $F = 0.12 \times 3.5 \times 0.01$ (length = 1.0 cm) $F = 4.2 \times 10^{-3}$ N	[1] [1] [1]
7	 a F = BIL F = 4.5 × 10⁻³ × 2.5 × 0.07 F = 7.88 × 10⁻⁴ ≈ 7.9 × 10⁻⁴ N b The magnetic field is parallel to the current (or the wire). c From Fleming's left-hand rule, PQ experiences a force out of the plane of the paper and RS a force into the plane of the paper. Hence, the frame starts to rotate in a clockwise direction (when viewed from the end PS) 	 [1] [1] [1] [1] [1]
8	 a F = BIL ∝ I (force ∝ current) Hence, the force increases by a factor of 3.0 to a value of 1.41 × 10⁻² N. b F = BIL ∝ B (force ∝ magnetic flux density) Hence, the force is halved to a value of 2.35 × 10⁻³ N. c F = BIL ∝ L (force ∝ length of wire in the field) Hence, the force is reduced to 40% of its initial value to 1.88 × 10⁻³ N. 	[1] [1] [1] [1] [1] [1]
9	a Left to rightb Force = weight of paper tape	[1]
	$F = mg = 60 \times (10^{-3}) \times (10^{-3}) \times 9.81$ milli factor changing grams into kilograms	[1]
	$F = 5.89 \times 10^{-4} \text{ N} \approx 5.9 \times 10^{-4} \text{ N}$	[1]
	$\mathbf{c} B = \frac{F}{IL}$	[1]
	$B = \frac{5.89 \times 10^{-4}}{8.5 \times 0.052}$ B = 1.33 × 10 ⁻³ T ≈ 1.3 mT	[1] [1]

10	It is the component of the magnetic flux at right angles to the current that provides the force	
	on the conductor.	[1]
	Component of <i>B</i> at right angles to current = B_{\perp} , where $B_{\perp} = B \sin \theta$.	
	The force F on conductor is given by $F = B_{\perp}IL$	[1]
	Hence $F = (B \sin \theta)IL$ or $F = BIL \sin \theta$	[1]
11	Force experienced by \mathbf{PQ} = force experienced by \mathbf{RS} (but in opposite direction).	[1]
	No force experienced by QR and PS (since current is parallel to the field).	[1]
	torque = one of the forces \times perpendicular distance between forces = (<i>BIL</i>)x	[1]
	torque = $BI(Lx)$, Lx = area of loop = A	[1]
	torque = $BIA \propto A$	[1]
	The torque is directly proportional to the area of the loop.	

2