Answer all questions.

elementary charge $e = 1.6 \times 10^{-19} \text{ C}$ mass of electron $m_e = 9.1 \times 10^{-31} \text{ kg}$

1 The diagram shows a copper wire carrying a current of 5.0 A placed at an angle of 60° to a uniform magnetic field.

	a b	The force experienced per unit length by the wire is 2.0×10^{-3} N cm ⁻¹ . State the direction of the force experienced by the wire. Calculate the magnetic flux density.	[1] [3]
2	An 50 a	a α-particle from a radioactive source enters a uniform magnetic field of flux density mT at right-angles. The speed of the α-particle is 4.0×10^6 m s ⁻¹ . Explain why the speed of the α-particle remains constant in the region of the magnetic field.	[2]
	b	The mass of the α -particle is 6.7×10^{-27} kg and it has a charge of 3.2×10^{-19} C.	
		For the α -particle in the magnetic field, calculate:	[0]
		the force acting on it due to the magnetic field	[3]
		iii the radius of its orbit	[2]
_			[4]
3	Αı	proton describes a circular path in a plane perpendicular to a magnetic field.	
	a	Show that the radius r of the circular path of the proton is given by:	
		$r = \frac{mv}{R_{e}}$	
		where m is the mass of the proton v is the speed of the proton e is the charge on the	
		proton and B is the magnetic flux density.	[3]
	b	Calculate the radius of the path described by a proton travelling at a speed of	[-]
		4.0×10^5 m s ⁻¹ in a uniform magnetic field of magnetic flux density 60 mT.	[2]
		(The mass of a proton = 1.7×10^{-27} kg.)	
	c	Explain how your answer to b would change if a proton travelling at twice the speed entered a magnetic field of twice the magnetic flux density.	[2]
	d	The diagram shows the actual trajectory of a proton in a particle detector when it is	
		travelling at right-angles to the magnetic field.	
		Suggest a possible reason why the path	
		is not a circle but a spiral.	[1]
		Total: $\underline{\qquad} 21$ Score:	%