8 Worksheet

permittivity of free space $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1}$
elementary charge $e=1.6 \times 10^{-19} \mathrm{C}$

Intermediate level

1 State two possible SI units for electric field strength.
$2 \mathrm{~A}+5.0 \times 10^{-8} \mathrm{C}$ point charge experiences a force of $1.5 \times 10^{-3} \mathrm{~N}$ when placed in a uniform electric field. Calculate the electric field strength.

3 Calculate the force experienced by an oil droplet with a charge of $3.2 \times 10^{-19} \mathrm{C}$ due to a uniform electric field of strength $5.0 \times 10^{5} \mathrm{~V} \mathrm{~m}^{-1}$.

4 The diagram shows two parallel, horizontal plates separated by a vertical distance of 3.0 cm . The potential difference between the plates is 600 V .

a Calculate the magnitude and direction of the electric field between the plates.
b Describe the electric field between the plates.
c An oil droplet of weight $6.4 \times 10^{-15} \mathrm{~N}$ is held stationary between the two plates.
i State whether the charge on the droplet is positive or negative.
Explain your answer.
ii Determine the charge on the oil droplet.
5 Draw the electric field patterns for the charged conductors shown.
a

c

6 Calculate the electrical force between a proton and an electron separated by a distance of $5.0 \times 10^{-11} \mathrm{~m}$.

7 The electric field strength E at a distance r from a point charge Q may be written as:

$$
E=k \frac{Q}{r^{2}}
$$

What is the value for k ?

Higher level

8 The diagram shows a point charge $+q$ placed in the electric field of a charge $+Q$.

The force experienced by the charge $+q$ at point \mathbf{A} is F. Calculate the magnitude of the force experienced by this charge when it is placed at points $\mathbf{B}, \mathbf{C}, \mathbf{D}$ and \mathbf{E}. In each case, explain your answer.

9 A spherical metal dome of radius 15 cm is electrically charged. It has a positive charge of $+2.5 \mu \mathrm{C}$ distributed uniformly on its surface.
a Calculate the electric field strength on the surface of the dome.
b Explain how your answer to a would change at a distance of 30 cm from the surface of the dome.

10 The diagram shows two point charges.
The point \mathbf{X} is midway between the charges.

a Calculate the electric field strength at point \mathbf{X} due to:
i the $+20 \mu \mathrm{C}$ charge
ii the $+40 \mu \mathrm{C}$ charge.
b Calculate the resultant electric field strength at point \mathbf{X}.
11 Describe some of the similarities and differences between the electrical force due to a point charge and the gravitational force due to a point mass.

Extension

12 The diagram shows two point charges. Calculate the distance x of point \mathbf{P} from charge $+Q$ where the net electric field strength is zero.

13 Show that the ratio:
electrical force between two protons
gravitational force between two protons
is about 10^{36} and is independent of the actual separation between the protons.
(Mass of a proton $=1.7 \times 10^{-27} \mathrm{~kg}$; gravitational constant $G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2}$.)

Total: $\frac{64}{\text { Score: }}$
\%

