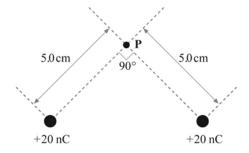
8 End-of-chapter test


Answer all questions.

permittivity of free space $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F m^{-1}}$ elementary charge $e = 1.6 \times 10^{-19} \,\mathrm{C}$

- 1 a Define electric field strength at a point in space. [1]
 - **b** The electric field strength close to a charged plate is 5.0×10^5 V m⁻¹. A droplet of paint carrying a charge of -4.8×10^{-19} C passes near to the charged plate.
 - i Calculate the force the paint droplet experiences due to the electric field. [2]
 - ii Determine the number of excess electrons on the droplet. [2]
- 2 The diagram shows the nucleus of a gold atom.

- a Draw the electric field pattern for the nucleus. [2]
- **b** The radius of the nucleus is 6.8×10^{-15} m and it has a charge of $+1.3 \times 10^{-17}$ C. Calculate the magnitude of:
 - i the electric field strength on the 'surface' of the gold nucleus [3]
 - ii the force experienced by an α -particle of charge $+3.2 \times 10^{-19}$ C at a distance of 1.4×10^{-14} m from the centre of the gold nucleus. [3]
- 3 The diagram shows two identical point charges situated in air.

- a Calculate the magnitude of the electric field strength at point **P** due to one of the +20 nC charges.
- **b** On the diagram above, draw the direction of the field at point **P**. [1]
- c Show that the resultant electric field is $\sqrt{2}$ times greater than your answer to part a. [2]

Total: Score: %

[3]