Answer all questions.

1	a	State Faraday's law of electromagnetic induction.	[1]
	b	Lenz's law expresses an important conservation law. Name this conservation law.	[1]
	c	i Define magnetic flux for a coil placed at right-angles to a magnetic field.	[1]

ii Determine for which of the two coils X and Y, each placed at right-angles to the magnetic field, is the magnetic flux linkage the greatest. [4]

- 2 The diagram below shows two coils A and B placed close to each other.
 - **a** The switch **S** is closed. Explain why the voltmeter placed across coil **B** indicates an induced e.m.f. for a short period of time.
 - **b** The coil **A** has 200 turns and cross-sectional area 9.0×10^{-4} m². With the switch **S** closed, the current through the coil **A** produces a uniform magnetic field within the coil of magnetic flux density 2.5×10^{-3} T. Calculate the magnetic flux linkage for this coil. [3]

- 3 A rectangular coil of length 3.0 cm and width 2.0 cm has 100 turns. The coil is placed at rightangles to a uniform magnetic field of magnetic flux density 1.2×10^{-2} T.
 - **a** The coil is removed from the magnetic field in a time of 50 ms.

	Calculate the magnitude of the average induced e.m.f. across the ends of the coil.	[5]
b	Explain how your answer to a would change if the magnetic field were parallel to the	

[2]

1

[4]

plane of the coil.