9 Worksheet 2

elementary charge $e=1.6 \times 10^{-19} \mathrm{C}$
mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$

Intermediate level

1 A current-carrying wire is placed in a uniform magnetic field.
a When does the wire experience the maximum force due to the magnetic field?
b When does the current-carrying wire experience no force due to the magnetic field?
2 A 4.0 cm long conductor carrying a current of 3.0 A is placed in a uniform magnetic field of flux density 50 mT . In each of \mathbf{a}, \mathbf{b} and \mathbf{c} below, determine the size of the force acting on the conductor.
a

b

c

3 A copper wire carrying a current of 1.2 A has 3.0 cm of its length placed in a uniform magnetic field. The force experienced by the wire is $3.8 \times 10^{-3} \mathrm{~N}$ when the angle between the wire and the magnetic field is 50°.

a Calculate the magnetic field strength.
b What is the direction of the force experienced by the wire?
4 Calculate the force experienced by an electron travelling at a velocity of $4.0 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ at right-angles to a magnetic field of magnetic flux density 0.18 T .

5 The diagram shows an electron moving at a constant speed of $8.0 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$ in a plane perpendicular to a uniform magnetic field of magnetic flux density 4.0 mT .
a Calculate the force acting on the electron due to the magnetic field.
b What is the centripetal acceleration of the electron?
c Use your answer to \mathbf{b} to determine the radius of the circular path described by the electron.

Higher level

6 The diagram shows the trajectory of an electron travelling into a region of uniform magnetic field of flux density 2.0 mT . The electron enters the region of magnetic field at 90°.

a Draw the direction of the force experienced by the electron at points \mathbf{A} and \mathbf{B}.
b Explain why the electron describes part of a circular path while in the region of the magnetic field.
c The radius of curvature of the path of the electron in the magnetic field is 5.0 cm . Calculate the speed v of the electron.
d Explain how your answer to \mathbf{c} would change if the electron described a circular path of radius 2.5 cm .

7 A proton of kinetic energy 15 keV travelling at right-angles to a magnetic field describes a circle of radius of 5.0 cm . The mass of a proton is $1.7 \times 10^{-27} \mathrm{~kg}$.
a Show that the speed of the proton is $1.7 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$.
b For this proton, calculate the centripetal force provided by the magnetic field.
c Determine the magnetic flux density of the magnetic field that keeps the proton moving in its circular orbit.
d How long does it take for the proton to complete one orbit?

Extension

8 The diagram shows a velocity-selector for charged ions. Ions of a particular speed emerge from the slit.

The parallel plates have a separation of 2.4 cm and are connected to a 5.0 kV supply. A magnetic field is applied at right-angles to the electric field between the plates such that the positively charged ions emerge from the slit of the velocity-selector at a speed of $6.0 \times 10^{6} \mathrm{~m} \mathrm{~s}^{-1}$. Calculate the magnetic flux density of the magnetic field.

9 An electron describes a circular orbit in a plane perpendicular to a uniform magnetic field. Show that the time T taken by an electron to complete one orbit in the magnetic field is independent of its speed and its radius, and is given by:

$$
T=\frac{2 \pi m}{B e}
$$

where B is the magnetic flux density of the magnetic field, e is the charge on an electron and m is the mass of an electron.

Total:
53

