9 Worksheet 2

elementary charge $e = 1.6 \times 10^{-19} \text{ C}$ mass of electron = $9.1 \times 10^{-31} \text{ kg}$

Intermediate level

- 1 A current-carrying wire is placed in a uniform magnetic field.
 - **a** When does the wire experience the maximum force due to the magnetic field? [1]
 - **b** When does the current-carrying wire experience no force due to the magnetic field? [1]
- 2 A 4.0 cm long conductor carrying a current of 3.0 A is placed in a uniform magnetic field of flux density 50 mT. In each of **a**, **b** and **c** below, determine the size of the force acting on the conductor.

3 A copper wire carrying a current of 1.2 A has 3.0 cm of its length placed in a uniform magnetic field. The force experienced by the wire is 3.8×10^{-3} N when the angle between the wire and the magnetic field is 50°.

[6]

- 5 The diagram shows an electron moving at a constant speed of 8.0×10^6 m s⁻¹ in a plane perpendicular to a uniform magnetic field of magnetic flux density 4.0 mT.
 - **a** Calculate the force acting on the electron due to the magnetic field.
 - **b** What is the centripetal acceleration of the electron?
 - c Use your answer to **b** to determine the radius of the circular path described by the electron.

1

Higher level

6 The diagram shows the trajectory of an electron travelling into a region of uniform magnetic field of flux density 2.0 mT. The electron enters the region of magnetic field at 90°.

Draw the direction of the force experienced by the electron at points A and B.	[1]
Explain why the electron describes part of a circular path while in the region of the	
magnetic field.	[1]
The radius of curvature of the path of the electron in the magnetic field is 5.0 cm.	
Calculate the speed v of the electron.	[5]
Explain how your answer to c would change if the electron described a circular path	
of radius 2.5 cm.	[2]
proton of kinetic energy 15 keV travelling at right-angles to a magnetic field describes	
circle of radius of 5.0 cm. The mass of a proton is 1.7×10^{-27} kg.	
Show that the speed of the proton is 1.7×10^6 m s ⁻¹ .	[3]
For this proton, calculate the centripetal force provided by the magnetic field.	[3]
Determine the magnetic flux density of the magnetic field that keeps the proton moving	[3]
For this proton, calculate the centripetal force provided by the magnetic field. Determine the magnetic flux density of the magnetic field that keeps the proton moving in its circular orbit.	[3] [3]
	Draw the direction of the force experienced by the electron at points A and B . Explain why the electron describes part of a circular path while in the region of the magnetic field. The radius of curvature of the path of the electron in the magnetic field is 5.0 cm. Calculate the speed v of the electron. Explain how your answer to c would change if the electron described a circular path of radius 2.5 cm. proton of kinetic energy 15 keV travelling at right-angles to a magnetic field describes circle of radius of 5.0 cm. The mass of a proton is 1.7×10^{-27} kg. Show that the speed of the proton is 1.7×10^6 m s ⁻¹ .

Extension

7

8 The diagram shows a velocity-selector for charged ions. Ions of a particular speed emerge from the slit.

The parallel plates have a separation of 2.4 cm and are connected to a 5.0 kV supply. A magnetic field is applied at right-angles to the electric field between the plates such that the positively charged ions emerge from the slit of the velocity-selector at a speed of 6.0×10^6 m s⁻¹. Calculate the magnetic flux density of the magnetic field.

[6]

[5]

9 An electron describes a circular orbit in a plane perpendicular to a uniform magnetic field. Show that the time T taken by an electron to complete one orbit in the magnetic field is independent of its speed and its radius, and is given by:

$$T = \frac{2\pi m}{Be}$$

where B is the magnetic flux density of the magnetic field, e is the charge on an electron and m is the mass of an electron.

Total: ______ Score: %