

を

$v=u+a t$

Rearrange Eq 1 to make ' v ' the subject

Substitute ' v ' into Eq 2 giving ' s ' in terms of ' u ', ' a ' and ' t '

$$
s=u t+1 / 2 a t^{2}
$$

Rearrange Eq 1 to make ' t ' the subject

Substitute ' t ' into Eq 2 giving ' s ' in terms of ' u ', ' a ' and ' v '

Rearrange this to now make ' v^{2} ' the subject

$$
v^{2}=u^{2}+2 a s
$$

Can you derive all these from this graph?

$$
v=u+a t \quad s=u t+1 / 2 a t^{2}
$$

$$
s=\frac{(u+v)}{2} \times t
$$

$$
v^{2}=u^{2}+2 a s
$$

Ticker timer

- Frequency of 50 Hz , therefore Time period of __s s
- Drop mass off bench, attached to tape
- Measure distance between dots
- Work out velocity
- Record your results in a table
- Plot a graph to calculate acceleration

Group work

Explain how experiments carried out by Galileo overturned Aristotle's ideas of motion.

Objective

- Use the suvat equations to calculate the motion of an object that is moving with horizontal and vertical components of velocity.

What to do....

- Draw a diagram if possible.
- List any assumptions made (e.g. air resistance negligible)
- Split motion into its vertical and horizontal components.
- Write down what you do know for $\mathrm{s}, \mathrm{u}, \mathrm{v}, \mathrm{a}$ and t for each component (' t ' often the same for both)
- Solve equation, giving the answer to an appropriate number of significant figures.
- Sit back and relax.

A student, after impressing their friends with their drinking prowess, decides they may be feeling a bit queasy. After going outside to 'get some air' they feel a bit better. Then, while standing upright and facing forwards, the drink returns. If the cider/WKD/Stella initially leaves at $5 \mathrm{~ms}^{-1}$ horizontally....
-What assumptions and estimations will you make?
-How long does it take to hit the ground?
-How far does it go?
-What is the velocity when it hits the ground (size and direction)?
-When do they next decide to drink alcohol again?

